
Extended coherent states and modified perturbation theory

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 L293

(http://iopscience.iop.org/0305-4470/33/32/101)

Download details:

IP Address: 171.66.16.123

The article was downloaded on 02/06/2010 at 08:30

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/32
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) L293–L297. Printed in the UK PII: S0305-4470(00)13100-2

LETTER TO THE EDITOR

Extended coherent states and modified perturbation theory

G M Filippov
Chuvash State University, Cheboksary, Russia

E-mail: gennadiy@chuvsu.ru

Received 30 March 2000, in final form 19 June 2000

Abstract. An extended coherent state (ECS) for describing a system of two interacting quantum
objects is considered. A modified perturbation theory based on using the ECSs is formulated.

1. Extended coherent states

Coherent states were constructed first by Schrödinger [1] and in the last 40 years of the 20th
century were widely used in different problems of quantum physics [2]. There are many
modifications of coherent states. Recall, for example, the spin coherent states introduced
in [3, 4]. A general algebraic approach in the coherent state theory was developed in [4].
The coherent states for a particle on a sphere were applied in [5] to describe the rotator time
evolution. Here we propose one more generalization of the theory by introducing the extended
coherent state (ECS).

Consider a system of an oscillator and a free spinless particle possessing a momentum
k0. Let b̂† and b̂ be the ladder operators for the oscillator. Introduce the creation â† and
annihilation â operators of Bose type to describe a possible change in the particle’s state (note
that the further consideration may be applied just as well to a Fermi particle). Input the operator

Q̂ =
∑

q

hqρ̂q (1)

where

ρ̂q =
∑

k

â
†
kâk+q

is the Fourier component of the density operator and hq are coefficients depending on
momentum q. We can construct another linear combination Q̂′ of operators ρ̂q with the
help of any other set of coefficients h′

q. All these combinations are commutative

[Q̂, Q̂′]− = 0

because the commutation rule

[ρ̂q, ρ̂q′ ]− = 0 (2)

is fulfilled for all q and q′.
Input a vector of state |0,k0), where the first argument (0) denotes a ground state of the

oscillator and the second one (k0) describes a state of the particle. Define the vector

|h,k0〉 = exp (− 1
2Q̂

†Q̂)

∞∑
n=0

1

n!
(Q̂b̂†)n|0,k0) (3)
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as an ECS (here we briefly denote by h the whole set of coefficients hq). Obviously, the
vector (3) coincides with the ordinary Schrödinger coherent state (SCS), when one replaces all
the particle’s operators by their classical equivalents. The ECS describes some state of a system
of two interacting quantum objects—the particle and the oscillator. By this circumstance the
ECS sufficiently differs from the SCS.

We outline the following general properties of the ECS.

(1) The ECS is not the eigenvector for b̂, but

b̂|h,k0〉 = Q̂|h,k0〉. (4)

(2) The operators ρ̂q only change momenta for all the one-particle states. Hence, the following
relations are fullfilled:

ρ̂q|h,k0〉 = |h,k0 − q〉 (5)

ρ̂†
q ρ̂q|h,k0〉 = |h,k0〉. (6)

(3) There is the following representation:

|h,k0〉 = exp[Q̂b̂† − Q̂†b̂]|0,k0) (7)

which is equivalent to the relevant representation of the SCS.
(4) If hq = g�(q − q0) we easily have

|h,k0〉 = exp

[−|g|2
2

] ∞∑
n=0

gn

n!
(ρ̂q0 b̂

†)n|0,k0) (8)

and, therefore,

〈h,k0|h′,k′
0〉 = exp[− 1

2 (|g|2 + |g′|2 − 2g∗g′)]�(k0 − k′
0). (9)

(5) The total amount of ECS are more than sufficient to define the Hilbert space. Following
Klauder [6] (see also [7]) we can introduce the development of the unity operator

Î =
∑

k

1

π

∫
d2z Q̂|zh,k〉〈zh,k|Q̂† (10)

where z is the complex variable, d2z = d[Re (z)] d[Im (z)]. To prove the last equation
one may use the integral∫

d2z (z∗)nzm exp[−|z|2Q̂†Q̂]Q̂m+1(Q̂†)n+1 = πn!δnm.

(6) There is the following useful sum rule:∑
k

eiskâk|h,k0〉 = eisk0 |α)⊗ |vacp) (11)

where the right-hand side contains a direct product of the SCS for the oscillator

|α) = exp

[
−1

2
|α|2

] ∞∑
0

αn

n!
(b†)n|0)

and a vacuum state of the particle |vacp). Here the quantity α is given by the formula

α =
∑

q

hqe−isq.

To prove the property (6) one should keep in mind the relation∑
k

âkeikxρ̂q1 ρ̂q2 . . . |0,k0) = eik0xe−iq1xe−iq2x . . . |0)⊗ |vacp) (12)

where |0) is the vector of the ground state of the oscillator.
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2. Modified perturbation theory

ECSs, first introduced in 1983 [8]†, arise, for example, in a problem of interaction between a
moving particle and an oscillator. The proper Hamiltonian can be represented in the following
general form:

Ĥint = b̂†
∑

q

gqρ̂q + b̂
∑

q

g∗
q ρ̂

†
q (13)

where gq is a coupling function. Since ρ̂†
q = ρ̂−q, it should be g−q = g∗

q .
In most applications the Hamiltonian (13) within the interaction picture depends on time

via the density operators ρ̂(t). In these cases we cannot apply ECS without some modification
of the theory. Indeed, instead of relations (2) we have

[ρ̂q(t), ρ̂q′(t ′)]− =
∑

k

â
†
kâk+q+q′ [exp{i(εkt − εk+q+q′ t ′ − iεk+q(t − t ′)}

− exp{i(εkt ′ − εk+q+q′ t + iεk+q′(t − t ′)}].
We construct a modified perturbation theory with the help of excluding an integrable part of the
interaction. For this purpose we expand the operator Ĥint(t) in two parts, Ĥ (0)

int (t) and Ĥ (1)
int (t),

where

Ĥ
(0)
int (t) = b̂†

∑
q

gqρ̂qfq(t) + b̂
∑

q

g∗
q ρ̂

†
qf

∗
q (t)

Ĥ
(1)
int (t) = Ĥint(t)− Ĥ (0)

int (t).

Here the function fq(t) must be unimodular to preserve the interaction intensity. Obviously,
the operators

∑
q gqρ̂qfq(t), defined at different times, obey the commutation relations. Then,

by virtue of the above consideration, the equation

i
d

dt
|t) = Ĥ (0)

int (t)|t)
acquires an exact solution

|t) = e−iχ̂(t)|h,k0〉 (14)

where Q̂ has the previous form (1) and

hq = −igq

∫ t

0
dt ′fq(t

′)eiωt ′

χ̂(t) = − i

2

∫ t

0
{ ˆ̇Q

†
(t ′)Q̂(t ′)− Q̂†(t ′) ˆ̇Q(t ′)} dt ′.

The solution (14) can be rewritten as |t) = Û0(t)|0,k0〉, where we introduce a zeroth-order
evolution operator

Û0(t) = exp{Q̂(t)b̂† − Q̂†(t)b̂ − iχ̂(t)}.
There are the following useful commutation relations:

[b̂, Û0(t)]− = Û0(t)Q̂(t) [b̂, Û †
0 (t)]− = −Û †

0 (t)Q̂(t)

[b̂†, Û0(t)]− = Û0(t)Q̂
†(t) [b̂†, Û

†
0 (t)]− = −Û †

0 (t)Q̂
†(t).

Let us introduce a new representation for the vector of state and for operators

|t〉 = Û †
0 (t)|t) Ã = Û †

0 (t)ÂÛ0(t).

† Extended coherent states were first denoted as ‘double coherent’ states or ‘modified coherent’ states.
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The new vector of state obeys the equation

i
d

dt
|t〉 = H̃ (1)

int (t)|t〉

which can be solved with the help of a standard technique using the T-exponent

|t〉 = T-exp

{
− i

∫ t

0
dt ′H̃ (1)

int (t
′)
}
|0,k0). (15)

If the choice of the function fq(t) ensures the rapid convergence to the series (15),
formula (14) gives a good approximation for the vector of state. In this case we can evaluate a
wide set of physical characteristics with sufficient accuracy. As an example, we calculate the
density matrix for the particle, for which the exact expression is given by the formula

�(x,x′, t) = 〈t |ψ̃†(x, t)ψ̃(x′, t)|t〉. (16)

Here the usual wave operators are introduced, namely,

ψ̃(x, t) = Û †
0 (t)ψ̂(x, t)Û0(t) ψ̂(x, t) =

∑
k

âk exp{ikx − iεkt}

where εk is an energy of the particle possessing momentum k. The further consideration will
be more convenient if the particle–oscillator interaction began at any incident time t0 < 0
when the oscillator was found in the ground state. Let us define the density matrix at t = 0.
In the first approximation we can set |t〉 ≈ |0,k0). In this case

�(x,x′, t) ≈ (0,k0|Û †
0 (0)ψ̂

†(x, 0)ψ̂(x′, 0)Û0(0)|0,k0). (17)

Using relation (7) we have Û0(0)|0,k0) = e−iχ(0)|h,k0〉, where Q̂ is defined as in (1) with

hq = hq(0) hq(t) = −igq

∫ t

t0

fq(t
′)eiωt ′ dt ′ t > t0.

Now we apply relations (12) to obtain the formula similar to (11):

ψ̂(x′, 0)Û0(0)|0,k0) = exp{ik0x
′ − i!(x′)}|α(x′, 0))⊗ |vacp) (18)

where

α(x, t) =
∑

q

hq(t)e
−iqx

!(x) =
∫ 0

t0

Im [α̇∗(x, t ′)α(x, t ′)] dt ′.

Substituting (18) into (17) we obtain

�(x,x′, 0) ≈ e−ik0x+ik0x
′
exp{i!(x)− i!(x′)− 1

2 [|α(x, 0)|2
+|α(x′, 0)|2 − 2α∗(x, 0)α(x′, 0)]}. (19)

Note that in the case gq = g�(q−q0), the phase!(x) = const and formula (19) is simplified.

The work was partly supported by the Russian Foundation for Basic Research (grant no 97-
02-16058).
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